Imperial College London

Kernel-PCA Analysis of Surface Normals for

SHAPE-FROM-SHADING

Patrick Snape and Stefanos Zafeiriou

Given the type of object in an image, how can we improve the accuracy of the recovered
*Normals are unit vectors that lie perpendicular to a point on a surface *Useful in shape recovery

SFS: Recover shape from single image using shading cues

* Given intensities and single light - Recover parameters that explain intensity values
Lambertian reflectance: $E=\rho \mathbf{N} \cdot \mathbf{L}$
* Intensity (E) is a function of the normals (\mathbf{N}), light vector (\mathbf{L}) and the albedo (ρ) * Under-constrained problem - infinite number of solutions! + Constrain the problem by introducing priors on the normals!

State-Of-The-Art

* Large literature, but most techniques struggle with complex objects such as faces + Barron \& Malik [1] is the state-of-the art general SFS algorithm \& Introduce a general set of priors
\& Recovers accurate lighting but not shape
?

Results

Embedded the kernel framework into an existing SFS algorithm [2]

 2. Project the nexdlemap into the fatures space using one of the $\cdots(2) \square$ 3. Reconstruct the best fit eature space vector: $\mathrm{U}_{F} \mathrm{U}_{\mathrm{F}} T_{T_{f}(\mathrm{X})}$.

Celebrity C
 Images

 O

?
References
[1] J. Barron and J. Malik. Shape, illumination, and reflectance from shading. Technical report, EECS, UC Berkeley,
[2] W. A. Smith and E. R. Hancock. Recovering facial shape using a statistical model of surface normal direction.
IEEE T-PAMI $28(12) \cdot 1914-1930$

