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Problem Statement

Goal: (meta-) optimization of non-linear least squares problems.
Given an initial estimate of the solution x(, find the optimal updates, x;.; = x; — AXy, that lead to local minima
x* of the provided objective function.

Application

Face Alignment. Given an estimate of the N facial landmarks xo = [x1,y1,...,2n,yn] . and given a face image,

the goal is to estimate a shape s that is as close as possible to the true shape x™.

Input image Final shape estimate
aligned with the mean face

Useful for:

e face recognition, L
e face animation,

o 3D face modelling/Morphable Models.

e face tracking,

e emotion recognition,

Contributions

e a non-linear cascaded framework for end-to-end learning of the descent directions of non-linear functions.
e an end-to-end trained model; from pixels intensities to the final predictions.
e the first memory-based descent learning model.

e improve on the state-of-the-art on face alignment by a large margin.

Cascaded Regression

e a cascade of independent, usually linear regressors is learnt from x( to x™,

e usually uses handcrafted features, or features that are not shared across the cascades.

Usual example is the Supervised Descent Method (SDM) (4] which proposes to learn a series of & linear regressions
formulated as:

arg minHAX(k) _ R [(I)(/f)ll 12,
R (%)
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Results

We report state-of-the-art results, even on the more challenging 300W dataset.

We compare MDM (0O), against:

Constrained-Local Neural Fields [1] (o), ERT [2] (%), PO-CR [3] (&), Face++ [5] (=), CFSS [6] (4),
Intra-face [4] (<), and Chehra (A). and Yan et.al. (o),

I e—e Baltrusaitis et al. [6] = Face++ [63] M= PO-CR [50] == ERT[26]1 [1[]™mDM
I @@® Yanetal. [58] Intra-face [56] N7\ Chehra [3] =} CFSS [64]
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Figure 3: Quantitative results on the test set of the 300W competition (indoor and outdoor combined) for both 68-point (left) and
51-point (right) plots.

Figure 1: An illustrative example of MDM for a total of T' = 3 time-steps. Initially the network input consists of a partial image
observation, consisting of the patches extracted at the mean face x(. The extracted patches (30 x 30) at each time-step are passed
through a subsequent convolutional network f.(-;6.), which in turn produces a representation that is robust to changes in appearance
variation. Based on the current state h;, the mnemonic module (implemented as a recurrent network) generates a new state h;,; and a
new set of descent directions Ax;,; that indicates where the network should focus next. After a total of 1" = 3 time-steps, MDM
successfully estimates the landmark locations.

51-points 68-points
Method AUC0.0S Failure (%) AUC0.0g Failure (%)

CLNF [1] 37.65 17.17 19.55 38.83
ERT [2] 40.60 13.50 32.35 17.00

PO-CR [3] 4765  11.70 - -
_ Face++ [5] 53.29 5.33 3281 13.00
An end-to-end trainable objective function: min||x* —xq+ > f(I,hs;0)]5 CFSS [6] 50.79 7.80 39.81 12.30
’ t=0 MDM 56.34 420 4532  6.80

Table 1: Quantitative results on the test set of the 300W competition using the AUC (%) and failure rate
e MDM maintains an internal memory unit with the history of all past observations of the input space.
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Figure 2: A t-SNE depiction of the internal states (7'= 1) of MDM when asked to align 2000 randomly selected images of CMU
Multi-PIE. Each colour corresponds to a cluster of head pose.
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