
Mnemonic Descent Method
A recurrent process applied for end-to-end face alignment

George Trigeorgis? Patrick Snape? Mihalis A. Nicolaou†
Epameinondas Antonakos? Stefanos Zafeiriou?
? Department of Computing, Imperial College London, UK
† Department of Computing, Goldsmiths University, UK

Problem Statement

Goal: (meta-) optimization of non-linear least squares problems.
Given an initial estimate of the solution x0, find the optimal updates, xt+1 = xt−∆xt, that lead to local minima
x∗ of the provided objective function.

Application

Face Alignment. Given an estimate of the N facial landmarks x0 = [x1,y1, . . . ,xN ,yN ]>. and given a face image,
the goal is to estimate a shape s that is as close as possible to the true shape x∗.
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Useful for:
• face recognition,
• face tracking,
• emotion recognition,

• face animation,
• 3D face modelling/Morphable Models.

Contributions

• a non-linear cascaded framework for end-to-end learning of the descent directions of non-linear functions.
• an end-to-end trained model; from pixels intensities to the final predictions.
• the first memory-based descent learning model.
• improve on the state-of-the-art on face alignment by a large margin.

Cascaded Regression

•a cascade of independent, usually linear regressors is learnt from x0 to x∗,
•usually uses handcrafted features, or features that are not shared across the cascades.

Usual example is the Supervised Descent Method (SDM) [4] which proposes to learn a series of k linear regressions
formulated as:

arg min
R(k)

‖∆X(k)−R(k)
[
Φ(k)1

]
‖2
F ,
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Figure 1: An illustrative example of MDM for a total of T = 3 time-steps. Initially the network input consists of a partial image
observation, consisting of the patches extracted at the mean face x0. The extracted patches (30× 30) at each time-step are passed
through a subsequent convolutional network fc(·;θc), which in turn produces a representation that is robust to changes in appearance
variation. Based on the current state ht, the mnemonic module (implemented as a recurrent network) generates a new state ht+1 and a
new set of descent directions ∆xt+1 that indicates where the network should focus next. After a total of T = 3 time-steps, MDM
successfully estimates the landmark locations.

An end-to-end trainable objective function: min
θ
‖x∗−x0 +

T−1∑
t=0

f (I,ht;θ)‖2
2

•MDM maintains an internal memory unit with the history of all past observations of the input space.
•Alignment of any near profile face from a frontal initialisation will have an extremely similar sequence of descent
directions.
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Figure 2: A t-SNE depiction of the internal states (T = 1) of MDM when asked to align 2000 randomly selected images of CMU
Multi-PIE. Each colour corresponds to a cluster of head pose.

Results

We report state-of-the-art results, even on the more challenging 300W dataset.
We compare MDM ( ), against:
Constrained-Local Neural Fields [1] ( ), ERT [2] ( ), PO-CR [3] ( ), Face++ [5] ( ), CFSS [6] ( ),
Intra-face [4] ( ), and Chehra ( ). and Yan et.al. ( ),
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Baltrusaitis et al. [5] Face++ [63]
Yan et al. [58] Intra-face [56] Chehra [3]
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Figure 3: Quantitative results on the test set of the 300W competition (indoor and outdoor combined) for both 68-point (left) and
51-point (right) plots.

51-points 68-points
Method AUC0.08 Failure (%) AUC0.08 Failure (%)

CLNF [1] 37.65 17.17 19.55 38.83
ERT [2] 40.60 13.50 32.35 17.00

PO-CR [3] 47.65 11.70 – –
Face++ [5] 53.29 5.33 32.81 13.00

CFSS [6] 50.79 7.80 39.81 12.30
MDM 56.34 4.20 45.32 6.80

Table 1: Quantitative results on the test set of the 300W competition using the AUC (%) and failure rate

References

[1] Tadas Baltrusaitis, Peter Robinson, and Louis-Philippe Morency.
Constrained local neural fields for robust facial landmark detection in the wild.
In International Conference on Computer Vision Workshops (ICCVW), pages 354–361. IEEE, 2013.

[2] Vahdat Kazemi and Josephine Sullivan.
One Millisecond Face Alignment with an Ensemble of Regression Trees.
In International Conference on Computer Vision and Pattern Recognition (CVPR), pages 1867–1874. IEEE, 2014.

[3] Georgios Tzimiropoulos.
Project-Out Cascaded Regression With an Application to Face Alignment.
In International Conference on Computer Vision and Pattern Recognition (CVPR), pages 3659–3667, 2015.

[4] Xuehan Xiong and Fernando De la Torre.
Supervised descent method and its applications to face alignment.
In International Conference on Computer Vision and Pattern Recognition (CVPR), pages 532–539. IEEE, 2013.

[5] Erjin Zhou, Haoqiang Fan, Zhimin Cao, Yuning Jiang, and Qi Yin.
Extensive facial landmark localization with coarse-to-fine convolutional network cascade.
In International Conference on Computer Vision Workshops (ICCVW), pages 386–391. IEEE, 2013.

[6] Shizhan Zhu, Cheng Li, Chen Change Loy, and Xiaoou Tang.
Face Alignment by Coarse-to-Fine Shape Searching.
In International Conference on Computer Vision and Pattern Recognition (CVPR), pages 4998–5006, 2015.

http://www.menpo.org
A Python framework for deformable modelling.
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