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Abstract

Shape-from-shading addresses the problem of recovering a 3D surface from
a single 2D image. In this project, we concentrate on reconstructing faces
from a single 2D image by incorporating a statistical model in to a Shape-
from-shading algorithm. We build on the work presented by W.A.P Smith
and investigate the reconstructive power of computing principal components
from directed data. We also present a novel reconstruction technique that
recovers a set of texture and shape coe�cients in order to reconstruct an
input image.

The novel reconstruction technique presented produces results that are
similar in visual appearance to W.A.P Smith’s reconstructions. We also
found that projecting the normals in to a Euclidean space improved the
ability of the statistical model to recover facial shape. Using unprojected
normals, however, still produced acceptable results.
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Chapter 1

Introduction

Modelling human faces has been of interest to researchers in computer graph-
ics for many years[18]. Since then increased computing power has allowed
researchers to create more accurate facial models. These models are created
in a number of ways and vary in their degree of accuracy. Powerful hardware
such as laser scanners[14] have been used to generate high quality 3D mod-
els of faces, yet are very expensive to operate. Recent interest has largely
been in the area of 3D reconstruction from 2D images. Since 2D images
are inexpensive to produce they represent a cost-e↵ective way of generating
accurate 3D models.

Morphable models,[4] for example, provide a robust method of modelling
from a single image. Morphable models use a database of 3D laser-scanned
faces. They attempt to express novel faces as a linear combination of a
statistical model form from the laser scans. Recovering facial shape using
this technique produces robust performance under widely varying illumina-
tion conditions and poses. Shape-from-shading approaches, such as those
proposed by [12] can also produce good looking results using just a single
image and reference face shape. They also avoid local minima as image pa-
rameters are computed directly from the input image and not by solving a
minimization problem.

This project investigates the feasability of improving Shape-from-shading
by introducing a statistical model. Shape-from-shading looks to recover
the surface normals from a single reference image. Surface normals, how-
ever, represent directional data and thus do not lie within a Euclidean
space. Standard statistical techniques such as Principal Component Anal-
ysis (PCA) require a Euclidean space in order to be calculated. We inves-
tigate existing techniques to perform statistical analysis on non-Euclidean
data, concentrating on the work outlined by William Smith [22, 23]. Our
contribution includes a new method of reconstructing normals through an
optimization loop that leverages the linear transformation model used by
Principal Component Analysis. It looks to construct a set of normal and
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texture coe�cients that represent a close match to the input image.

1.1 Motivation and Objectives

Reconstructing 3D models of faces from 2D images has many applications in
areas such as face recognition[11, 29] and facial expression analysis[16, 17].
One of the major challenges in face recognition is the occurence of a large
variation in lighting and pose. 3D models have the distinct advantage that
they can be re-rendered under new illumination conditions and in novel
poses. Surface normals, in particular, represent a very descriptive repre-
sentation of a face, as they are invariant under changing illumination. In
practise it is extremely challenging to produce consistent results given un-
constrained input data. For this reason it is interesting to investigate new
techniques for recovering accurate surface normals from images.

1.2 Contributions

This project has provided the following notable contributions:

• A set of Matlab script to perform both the Azimuthal Equidistant
Projection and Principal Geodesic Analysis on a face data set. These
techniques are distinct from the area of facial reconstruction and could
in fact be used on any directional data.

• An implementation of William Smith’s reconstruction algorithms de-
scribed in both [22] and [23]. These provide accurate reconstructions
of faces from a single front-facing reference image under a directed
light.

• A new reconstruction method based on recovering a set of shape coef-
ficients to reconstruct the image from a statistical model. This recon-
struction method, whilst not robust, yields acceptable results from a
range of images.

• A comparison of the robustness of using surface normals in a statistical
model. This includes building statistical models directly on the surface
normals, data projected using the Azimuthal Equdistant Projection
and performing Principal Geodesic Analysis.
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Chapter 2

Background

In this Chapter we explain the state-of-the-art techniques that currently
exist for reconstructing faces from 2D images. In particular we concentrate
on analysis-by-synthesis and shape-from-shading. Analysis-by-synthesis is
used within the context of morphable models[4] and shape-from-shading is
used by a number of di↵erent reconstruction techniques[22, 12]. We also
explain statistical techniques that are used within the context of statistical
face reconstruction, namely PCA.

2.1 Analysis-by-synthesis

Analysis-by-synthesis refers to a technique that was first described within the
context of signal processing[3]. The technique aims to synthesize signals from
a known generator and compare them with signals that are to be analyzed.
It then computes the error between the synthesized and analyzed signals.
Multiple new signals are generated until one is produced that minimizes the
measure of error.

2.1.1 Morphable 3D Face Model

Analysis-by-synthesis has been extended in to the realm of 3D face recon-
struction by the seminal work of Blanz and Vetter[4]. They propose the
morphable model to synthesize both novel faces as well as to fit their model
to existing 2D images. The morphable model is constructed from a set of
laser scans from the heads of 200 young adults (100 male, 100 female). In
order for the scans to be used as a single dataset they first had to be brought
in to correspondence. Point-to-point correspondence is necessary to allow
the information from each scan to be parameterized within a common space.
Once in correspondence the scans have the same number of vertices and each
vertex can be matched to a corresponding vertex in all the other scans in the
dataset. This correspondence is calculated using an Optic Flow algorithm
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and a reference face (details can be found in [4, 24]).
Once all faces are in complete correspondence they can be parameterized

by a common discrete reference space called (u, v) space. In order to provide
continuity within this discrete space all vertices are treated as a triangle list
and barycentric coordinates are used to interpolate within the triangles.

To represent the face within the morphable model both the shape and
texture information are needed. The shape is normally represented as a
shape-vector and the texture information as a texture-vector:

S = (X
1

, Y
1

, Z
1

, X
2

, . . . , Y
N

, Z
N

)T T = (R
1

, G
1

, B
1

, R
2

, . . . , G
N

, B
N

)T

where N is the number of vertices in the face scan. It is important to note
that the number of vertices and the number of RGB values match exactly
and each RGB corresponds to the colour of the texture of the vertex in that
position.

Each face within the dataset can be represented by it’s shape-vector S
i

and texture-vector T
i

. Since all faces are in correspondence, novel faces can
be expressed as a linear combination of the shape and texture vectors:
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where m is the total number of face scans and ↵
i

and �
i

are the shape
texture coe�cients of the ith scan. Also, in order to enforce plausible novel
faces, the coe�cients must sum to 1. Novel faces are generated by varying
the parameters of ↵ and � for each scan in the linear combination.

Principal Component Analysis (PCA) is then performed in order to re-
duce the dimensionality of the model. A more formal description of PCA
can be found in Section 2.1.2.

2.1.2 Principal Component Analysis

Principal Component Analysis (PCA) can provide us with a more intuitive
way of representing our data. It allows us to build a statistical model of
faces whereby a large range of all possible faces can be described. Formally
PCA is used to provide a basis to a set of data where the eigenvector that
corresponds to the largest eigenvalue highlights the direction of highest vari-
ance. This eigenvector corresponds to a line that passes through the mean
and gives the least squares distances of the points in the dataset from the
line. The set of points in the dataset must lie within a Euclidean space.
A Euclidean space is required to allow the calculation of the least squares
distances.
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This can be useful in reducing the dimensionality of the dataset. Remov-
ing the lowest principal components amounts to losing the least amount of
information possible. PCA is performed seperately on both the shape and
texture vectors - but the technique is identical.

In order to calculate the principal components of the shape vector the
average shape vector must first be computed:

S̄ =
1

m

mX

i=1

S
i

where m is the number of face scans. This is then subtracted from each of
the face scans to give us the shape di↵erences:

�S = S
i

� S̄

The covariance matrix C is computed as:

C =
1

m
�S�ST

C can be expressed in terms of it’s eigenvalues and corresponding eigenvec-
tors (calculated using SVD[7]) in the form:

C =
1

m
U⇤2UT

where the columns of U are the eigenvectors and the corresponding eigen-
values are given by the diagonal elements of ⇤

2

m

.
Due to the fact that the number of face scans is almost always going to

be less than the number of vertices per scan, it can be assumed that m ⌧ N .
This means that there are only m� 1 non-zero eigenvalues and so only the
first m� 1 columns of U contain meaningful eigenvectors.

Given the above formulation of the principal components, the morphable
model can now be described as a linear combination of the average shape
vector and the weighted principal components:
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(2.1)

where s
i

and t
i

are the principal components for the shape and texture
vectors.

The PCA representation also holds the advantage that the probability
of any coe�cient (↵ or �) can be modelled by a multivariate normal distri-
bution:
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where �
i,S

and �
i,T

are the eigenvalues from the shape and texture co-

variance matrices. ~↵ and ~� represent vectors of all the coe�cients eg.
~↵ = (↵
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2.1.3 Matching a Morphable Model to an image

The main construct involved with matching a morphable model to an image
is the analysis-by-synthesis loop. The loop attempts to optimize the ↵ and
� coe�cients as well as a set of rendering parameters, ~⇢. In every iteration
a texture mapped 3D face is created and rendered from the current model
parameters. It is then updated according to the error calculated in terms of
the `

2

norm.
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where I
model

represents the RGB components rendered using perspective
projection and phong illumination during the rendering phase.

In order to impose the synthesis of face-like surfaces the shape and tex-
ture vectors are limited to the vector space of the database. Solutions are
restricted to this space by a tradeo↵ between reducing the Euclidean dis-
tance and prior probability. Utilizing the probabilities of the coe�cients of
~↵ and ~� shown in Equation 2.2 and using an ad-hoc estimate for ~⇢, Bayes
decision theory can be utilized to solve the problem. ~↵, ~� and ~⇢ can be used
to fully reconstruct I

model

, however, I
input

may su↵er from noise. Therefore,
likelihood of I

input

is modelled as:
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where �
S,N

represents the standard deviation of the noise present in I
input

modelled as a Gaussian distribution. Maximum posterior probability is
achieved by minimizing the cost function[4]:
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A stochastic gradient descent algorithm is then performed based on a ran-
dom selection of surface points. Parameters are updated using analytical
derivates of the cost function (2.3):
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j
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(2.4)

with suitable factors �
j

.
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2.2 Shape-From-Shading

Shape-from-shading is the problem of using shading information from a sin-
gle image in order to recover shape information. In a greyscale image the
varying intensity at each pixel is due to four properties within the image;
the shape of the surface, the illumination, the reflectance properties and
the projection. Therefore, shape information can be recovered through an
inversion of the previous factors. This is generally described as generating
estimates from the Irradiance Equation for a Lambertian surface. Lambert’s
cosine law states that the radiance observed from a surface is proportional
to the cosine of the angle between the viewing direction and the surface
normal. A surface that obeys this law is said to be Lambertian and has the
same radiance when observed from any viewing angle.

Given the intensity of a pixel, I
p

, the local surface normal, n
p

= (p, q,�1),
the albedo ⇢, and a vector, s, describing the direction of a single distant light
source, then according to Lambert’s cosine law:

I
p

= ⇢(n
p

· s) (2.5)

In general, shape-from-shading is ill-posed and calculating a solution requires
some form of prior knowledge about the lighting conditions, albedo and
boundary conditions (maximum depth of the surface). Shape-from-Shading
is often solved using a constrained optimization framework [9, 8, 10] that
looks to minimize a cost function using calculus of variations.

2.3 Photometric Stereo

Photometric Stereo is a technique used to recover a three-dimensional sur-
face from a two-dimensional image. It was first proposed by Woodham in
1980 [25]. The technique assumes specific reflectivity properties about the
surface and uses these assumptions to recover illumination invariant proper-
ties of the surface. Specifically it assumes Lambertian reflectance and looks
to recover the surface normals and albedo. As shown in Equation 2.5 there
are 3 unknowns, p, q and ⇢. Photometric stereo looks to overcome the issue
of recovering these parameters by producing a system of equations. Taking
3 or more images from the same position, but under di↵erent lighting con-
ditions, will yield a system of equations from which the unknowns can be
recovered. Whilst, under certain conditions, the unknowns can be recovered
using just two images, 3 or more images ensures that a solution can be ar-
rived at. However, specularities and areas of poor illumination can a↵ect
the accuracy of the reconstruction.

Adding extra images, usually a fourth image, can allow the reconstruc-
tion to identify areas of specularity and treat them as deviations from Lam-
bert’s law. In this project we use the 4-source technique proposed by Barsky
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and Petrou [2]. Their proposal is to use a fourth image in order to identify
areas of specularity and shadow and then to use the shading information
from the colour images to aid in reconstruction. Normally the colour infor-
mation in an image is redundant for photometric stereo as the photometric
equations in the RGB channels are linearly dependant. However, the colour
can be leveraged to perform Shape-from-Colour where only a single colour
image under complex illumination is used. In the case of Barsky and Petrou
they use the 4-source technique proposed by Coleman and Jain [15] and then
they use a local spectral di↵erence in order to identify highlights.

2.4 Recovering A Surface From Normals

In order to be able to reconstruct a shape from the field of normals there
must exist some form of projection from the normals to a set of coordinates
in 3D space. The optimum way of performing this reconstruction is to
build a depth map from the normals. A depth map views the image as
a grid whereby each data point is the height above the (x, y) plane. In
the traditional shape-from-shading problem the normals are computed as
opposed to directly recovering the depth map. This has been shown by Horn
and Brooks[10] to be a simpler reconstruction than attempting to recover
the depth map directly. Therefore, it is possible to attempt to recover
the surface information by first recovering the components of the normal
vector (p, q,�1). In this case p and q represent first-order non-linear partial
di↵erential equations in x and y

p = @z

@x

q = @z

@y

In order to provide consistency on both p and q a smoothness constraint
is enforced on the surface constructed by integrating p and q. This surface
is constrained by the following assumption:

z
xy

(x, y) = z
yx

(x, y)

which states that the surface height at any point is independant from the
path of integration.

Frankot and Chellappa propose a technique for enforcing this integration
constraint by using Fourier transforms[6]. In this project a single pass of
the reconstruction is used as opposed to the iterative technique proposed in
[6].

The Fourier transform of a grid from �⇡

2

to ⇡

2

is taken and then centered
to yield the frequency domain representation of the depth map. An inverse
Fast-Fourier transform is performed and the data shifted to give the recon-
structed depth map. Mathematically this amounts to solving the following
minimization problem
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C̄(!) =
�j!

x

Ĉ
x

(!)� j!
y

Ĉ
y

(!)

!2

x

+ !2

y

where C̄(!) represents the vector of coe�cients of the Fourier series expan-
sion of the depth map. These coe�cients are used in the reconstruction that
follows from the following representation of the surface

z̄(x, y) =
X

C̄(!)exp{j! · (x, y)}

where ! is a two-dimensional index in the range (2⇡N, 2⇡N) for an N ⇥N
image.

2.5 Other Existing Work

The original shape-from-shading algorithm was proposed by Horn [8]. It has
been investigated more recently by the likes of Zhang et al. [28] and is now
regarded as a mature field.

More recently there have been a number of approaches to reconstructing
faces from 2D images using shape-from-shading. Kemelmacher and Basri
have proposed a single image[12] reconstruction using just a reference model
that generates a good approximation of facial shape. They assume that the
input image is roughly aligned to their reference model and approach the
reconstruction by solving for lighting, depth, and albedo separately. They
represent reflectance using spherical harmonics and use the reference model
to help overcome boundary conditions and infer albedo.

Kemelmacher and Seitz also propose a novel method involving using
many input images from a large multi-pose dataset [13]. They concentrate
on pose normalization and look to build on photometric stereo techniques
by leveraging the change in illumuination over the large input set.

There are also a number of reconstruction techniques that involve lever-
aging a large set of 3D laser scanned faces. Most notably morphable models
[4] uses this technique. Morphable models have also recently been extended
through the works of Zhang et al. [27] to include more robust lighting mod-
els.
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Chapter 3

Project

In this chapter we discuss the work undertaken within the project. The
project consists of two major sections. The first is an investigation in to
the techniques available to project non-Euclidean data so that statistical
analysis can be performed on it. Two techiques have been covered; the
Azimuthal Equidistant Projection and Principal Geodesic Analysis. We also
provide an implementation of statistical shape-from-shading as proposed by
William Smith[22, 23].

The second part of the project is a novel reconstruction technique. This
new algorithm looks to recover a set of coe�cients that can be used in
conjunction with a statistical model in order to reconstruct an input image.
This method of reconstruction is not robust but yields similar results to
Smith’s reconstructions on front-facing images.

3.1 PCA on directional data

A normal is defined as the unit vector that is perpendicular to a particular
point on a surface. Therefore, by definition, a set of surface normals rep-
resents a directional dataset. We can can view normals as points residing
on the surface of a unit sphere. This projection on to a unit sphere is often
referred to as a needlemap.

The linear combination of unit vectors is itself not a unit vector and
thus cannot be treated in a linear fashion. For this reason it is not possible
to perform Principal Component Anlysis on a set of surface normals. The
major issue is that of determining an accurate distance between two points
within the data set. Straight line distance is not an accurate measure as the
real distance covered is on the surface of the sphere; the so called geodesic
distance. Therefore, in order to perform statistical anlysis on the surface
normals, we must project them in to an appropriate Euclidean space. Two
techniques have been proposed by Smith[22, 23] in order to overcome this
issue; the azimuthal equidistant project and principal geodesic an.
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3.1.1 Azimuthal Equidistant Projection

The Azimuthal Equidistant Projection (AEP) is a commonly used carto-
graphic projection. It is often used in order to produce polar-centric maps
such that any distance measured along a line of longitude is an accurate
geodesic distance. This is particularly useful for building statistical repre-
sentations as it allows us to measure straight line distances that correspond
to geodesic distances between points.

Given a set of k training images we can construct the AEP by first
calculating the surface normals. We can construct the mean-surface normal
direction at a particular pixel (i, j) by taking each normal from the training
set at that pixel and computing an average.

n̂(i, j) =

1

K

KP
k=1

n
k

(i, j)

k 1

K

KP
k=1

n
k

(i, j)k

We can then represent a surface normal through it’s elevation angle
✓
k

(i, j) and azimuth angle �
k

(i, j)

✓
k

(i, j) =
⇡

2
� arcsinn

k

(i, j)
z

�
k

(i, j) = arctan
n
k

(i, j)
y

n
k

(i, j)
x

We also construct the average azimuth and elevation angles as

✓̂(i, j) =
⇡

2
� arcsin n̂(i, j)

z

�̂(i, j) = arctan
n̂(i, j)

y

n̂(i, j)
x

In order to construct the AEP we begin by constructing the tangent
plane to the unit sphere at the location of the mean-surface normal. A
local coordinate system is used with the x-axis aligned to the local circle
of latitude on the unit sphere. The center of the coordinate system is the
point of contact between the tangent plane and the unit sphere. We can
then calculate a new projected point for every normal n

k

(i, j) we will call
(x

k

(i, j), y
k

(i, j). The equations for the unit sphere to the tangent plane
coordinate space are

15
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The inverse equations - from tangent coordinates back to unit sphere
space are
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sin(c) cos(✓̂))

�
k

(i, j) = �̂+ arctan( )

Figure 3.1 shows the outcome of rendering a set of surface normals on
the unit sphere. It also shows the projected space constructed by applying
the AEP on the normals.

Projection of the needlemap to the
unit sphere.

Projection to the tangent plane at the
mean point.

Figure 3.1: AEP projections
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3.1.2 Principal Geodesic Analysis

Principal Geodesic Analysis (PGA) was a technique first proposed by Fletcher
et al.[5] for use in tensor MRI data. It looks to build statistics on the vari-
ability of data on a manifold. It is seen as a generalization of Principal
Component Analysis on Euclidean spaces to non-Euclidean manifolds. In
the case of our needlemap we look to build a statistical model by viewing
the normals as lying on a spherical manifold. More specifically we require a
Reimannian manifold as we need to be able to measure distances between
points on the manifold.

Manifolds

A manifold is a topological space that is locally Euclidean. That is to say
that for any point P that lies on the manifold there is a neighbourhood
around P that lies in the same Euclidean space. A sphere can be seen as
a 2-manifold as it is possible to ’flatten’ out local regions on the sphere
on to planes. This process of projecting manifolds to a Euclidean space is
known as charting. A common case of this is the idea of building 2D planar
maps of the surface of the spherical Earth. Any manifold can be completely
described by a series of charts, called an atlas.

A di↵erentiable manifold is a manifold where each chart is locally similar
enough to a linear space to allow calculus to be performed. If the transition
from one chart to another is di↵erentiable then any computations done in
one chart are valid in any other di↵erentiable chart. A Reimannian manifold
is a smooth di↵erentiable manifold that allows the computation of distances
and angles on the manifold. This is formally defined as each tangent space
being equipped with an inner product function that varies smoothly from
point to point. In the case of a 2-sphere the tangent space can be thought
of as the plane that intersects a point on the surface of the sphere with
a normal perpendicular to the surface. The inner product for the 2-sphere
would be the dot product. This is a particularly useful result for the analysis
of normals as it allows us to accurately measure distances between points on
the sphere. These distances are required to allow us to accurately perform
PCA on the dataset.

The Log and Exponential Map

Two important operators for the 2-sphere manifold are the Log and Expo-
nential maps. Given a point on the surface of a sphere and the normal n at
that point we can define a plane tangent to the sphere at n. If we then have
a vector ~v that points to another point on the tangent plane then we define
the exponential map, Exp

n

, as the point on the sphere that is distance k~vk
along the geodesic in the direction of ~v from n.
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The log map, Log
n

is the inverse of the exponential map. Given a point
on the surface of the sphere it returns the corresponding point on the tangent
plane at n.

The Reimannian distance between two points, also known as the geodesic
distance, is denoted as d(n1, n2). In the case of the 2-sphere the geodesic
distance can be defined in terms of the log map

d(n1, n2) = kLog
n1

(n2)k (3.1)

Figure 3.2 below shows a visualization of the exponential map. Here
a single normal represented by the point (0, 1, 0) is projected by a vector
of (0.5, 0, 0). The blue line around the line of latitude shows the geodesic
distance between the points. Figure 3.3 shows a visualization of the log
map. Here we see the tangential plane at the north pole and a point on the
surface of the sphere projected back on the tangent plane.

Figure 3.2: Red point, p, is the point (0, 1, 0), the vector, ~v, is (0.5, 0, 0) and
the green point is Exp

p

(~v)
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Figure 3.3: Tangent plane at n, the north pole (0, 0, 1). Shows the point on
the sphere, p (0.909, 0, 0.431), projected back on the the tangent plane by
Log

n

(p)

Practical Implementation of the Log and Exponential Maps

In order to actually calculate the Log and Exp we use the formulation
specified by Smith and Patel in [19]. This uses a stereographic projection
in order to project every point on the sphere on to a plane defined in terms
of a particular base point. We can define the Log map of a point x on the
surface of the sphere at a base point b as follows:

1. Define a point �b that is opposite the base point b

2. Calculate the tangent vector v0 that is the vector that intersects the
point �b, x and the tangent plane at b

3. Resize the tangent vector v0 to have the correct magnitude such that
kvk = Log(b, x)

Mathematically the Log map can be defined as

Log
b

(x) = b+
✓(v0 � b)

kv0 � bk
where b is the base point (point of projection) and
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v0 =
2b+ x

kb+ xk cos↵ � b

↵ = arccos(
4 + kb+ xk2 � kb� xk2

4kb+ xk )

✓ = arccos(b · x)

Similarly the exponential map can be calculated by

Exp
b

(v) =
p
2(1 + cos ✓)

✓
v0 + b

kv0 + bk

◆
� b

where

✓ = kb� vk

v0 = b+
(v � b)2 tan↵

kv � bk

↵ = arccos

 
4 + 2(1 + cos ✓) + (2 sin(✓/2))2

4
p

2(1 + cos ✓)

!

Figure 3.4 below gives a diagram of the equations above. Here we can
clearly see the base point b at the top of the circle. We then define the vector
v0 that intersects �b, x and the tangent line at b. The point marked v is
the resized vector that represents the true geodesic distance between b and
x. It also shows the angle ✓ used in the exponential map reconstruction.

Figure 3.4: Cross section showing the steregraphic projection from a base
point b = (0, 1, 0)

Spherical Medians

The classic Euclidean mean for a sphere is defined as
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n̄(i, j) =

1

N

NP
n=1

n
k

(i, j)

k 1

N

NP
n=1

n
k

(i, j)k

which is also often referred to as the centre of mass. This is the Euclidean
centre of the set of points normalized back on to a point on the sphere. This
lends itself to calculating the extrinsic mean as it looks to minimize the
Euclidean distance on the sphere.

A better representation for a sphere would be to treat each data point
as lying on the sphere and use their geodesic distance from one another. As
a 2-sphere is a Reimannian manifold this amounts to being the Reimannian
distance calculated using the inner product. In the case of a 2-sphere this
is the arccosine of the dot product between the points. However, as shown
earlier in Equation 3.1 we use the log map in order to calculate the distance
between two points on a sphere. Formally this is defined as performing a
gradient descent to minimize the equation

µ
p

= Exp
p

(
1

K

X
Log

p

(n
i

)) (3.2)

taken from Pennec’s paper [21]

Computing Principal Geodesics

Now that we have descriptions of calculating distances on spherical manifolds
we can perform statistical analysis on the surface normals. In standard PCA
each eigenvector calculated gives a straight line. In PGA this straight line
is with replaced by a geodesic curve that lies on a geodesic manifold. In the
case of the 2-sphere this amounts to a great circle on the sphere. In PCA
data is projected into a lower-dimensional subspace in a linear way. In PGA
a di↵erent kind of projection operator is required. The projection must be
on to the nearest geodesic on the sphere. However, due to the nature of
manifolds we can approximate this projection linearly in the tangent space
at each point. Formally the projection operator is defined as

⇡
G

(n
0

) = arg min
n2G

d(n
0

, n)2

This is then approximated in the tangent space as

Log
µ

(⇡
G

(n
0

)) ⇡
KX

i=1

v
i

· Log
µ

(n
0

)

Where v
i

are part of an orthogonal basis of vectors in the tangent plane.
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The minimization problem of computing all of the principal directions
is equivalent to the standard PCA analysis of the vectors Log

µ

(n
i

) in the
tangent plane. Formally the process of computing the principal geodesics
can be described as

Algorithm 1 Calculate Principal Geodesic Analysis

Input: x
1

, ..., x
N

2 S2

Output: Principal Directions, v
k

2 T
µ

S2

µ = Intrinsic mean of {x
i

} (Equation 3.2)
u
i

= Log
µ

(x
i

)

S = (1/N)
P

N

i=1

u
i

uT
i

{v
k

} = Eigenvectors of S

3.1.3 The Hard Irradiance Constraint

In shape-from-shading we assume a Lambertian reflectance model. Due
to this assumption we know that the surface normal is constrained to fall
somewhere on a cone whose axis is the light source direction and whose
opening angle is the inverse cosine of the image intensity. By maintaing
this hard irradiance constraint we can build more accurate models by fitting
the statistical model to the best-fit surface normals and then rotating the
normals back on to the nearest on-cone position.

Worthington and Hancock [26] describe a relatively simple method of
rotating a normal back to the closest on-cone position. It involves using the
generalized formula for rotating a vector about the axis (u, v, w) in 3D space
by a particular angle � given by the matrix:

2

4
cos�+ u2c0 uvc0 � w sin� uwc0 + v sin�
vuc0 + w sin� cos�+ v2c0 vwc0 � u sin�
wuc0 � v sin� wvc0 + u sin� cos�+ w2c0

3

5 (3.3)

where c0 = 1� cos�.
In the case of the hard irradiance constraint we rotate the matrix about the
angle �:

� = ✓(x, y)� arccos(n(t)(x, y) · s)
(u, v, w) = n(t)(x, y)⇥ s

where n(t)(x, y) represents an o↵-cone surface normal at iteration t, s denotes
the direction of the light source from the surface and ✓(x, y) represents the
intensity at pixel (i, j).

This method is usually initialized by placing the surface normals on the
reflectance cones such that they are aligned with the direction opposite to
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the local image gradient. However, since we are using a statistical model, a
better initialization is to align them on the cone at the point closest to the
local average normal direction. Figure 3.5 gives a diagram of the on-cone
rotation performed by the rotation matrix given in Equation 3.3. We can
clearly see the o↵-cone normal nk being rotated back on to the reflectance
cone by the angle �.

Figure 3.5: Taken from [26]. It shows the notion of an o↵-cone surface
normal n̄k being rotated by an angle � back to the nearest on-cone position

3.1.4 Implementing Azimuthal Equidistant Projection

In order to test the robustness of the Azimuthal Equidistant Projection we
implemented Smith’s algorithm in Matlab. The most challenging aspect of
the reconstruction was ensuring that the calculated azimuth and elevation
angles resided within the correct quadrant. Due to the periodic nature of
the sin and cosine functions it was necessary to shift the elevation angle to
ensure it was in the range [�⇡/2,⇡/2].

Smith’s algorithm centers around iteratively reconstructing the field of
surface normals using the statistical model and then imposing the hard-
irradiance constraint. A summarization of the algorithm is as follows:

for i=1:3
n = npp;

% Loop until convergence
v0 = spherical2azimuthal(n, mu);

% vector of best�fit parameters
b = U' * v0;
% transformed coordinates
vprime = U * b;

nprime = azimuthal2spherical(vprime, mu);
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% Normalize
nprime = reshape2colvector(nprime);
nprime = reshape(bsxfun(@rdivide, nprime, colnorm(nprime)), [], 1);

npp = OnConeRotation(theta, nprime, s);
end

where OnConeRotation performs the rotation described by the matrix 3.3.
Smith’s original paper suggests testing for convergence using the cost

metric
P

arccos(n0(i, j) ·n00(i, j)) < ✏. However, there is no formal proof for
convergence of this method and thus a fixed number of iterations was used.

In order to initialize the normals each normal was set to lie on the local
average normal direction:

n(0)(i, j) =

0

@
sin ✓(i, j) cos �̂(i, j)

sin ✓(i, j) sin �̂(i, j)
cos ✓(i, j)

1

A

3.1.5 Implementing Principal Geodesic Analysis

To compare the reconstructive ability of Principal Geodesic Analysis against
the Azimuthal Equidistant Projection we implemented an equivalent itera-
tive reconstruction algorithm using PGA. As in the AEP algorithm it in-
volves finding a set of best-fit parameters and then enforcing the hard irra-
diance constraint and rotating the normals back on to the relfectance cone.

In order to calculate PGA a set of spherical medians must be found.
Finding a set of spherical medians is an optimization problem that amounts
to performing a gradient descent to minimize the Equation 3.2. This algo-
rithm is performed over every single normal in the training set in order to
find the spherical median for each point across all the training images. Once
the set of spherical medians is found PCA can be performed on the training
set by projecting every normal to the tangent plane defined by the spherical
median. Formally we construct a matrix, D, defined as

D = [v1, ..., vK ]

vk = [Log
µ

1

(nk

p

), ..., Log
µ

N

(nk

N

)]T

PCA is then performed on the matrix D and, similar to the AEP recon-
struction, we can define a reconstruction algorithm as follows

for i = 1:3
% Reshape the column vector to a 3xN matrix
ncol = reshape2colvector(n);
v0 = ncol;
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% Project using the log map to the tangent planes
% defined at each spherical median
for p = 1:size(ncol, 2)

v0(:, p) = logmap(mus(:, p), ncol(:, p));
end
% Reshape back to a column vector
v0 = reshape(v0, [], 1);

% Vector of best�fit parameters
b = U' * v0;
% Transformed coordinates
vprime = U * b;

% Reshape the column vector to a 3xN matrix
vcol = reshape2colvector(vprime);
nprime = vcol;
% Reconstruct the normals from the projected
% parameters
for p = 1:size(vcol, 2)

nprime(:, p) = expmap(mus(:, p), vcol(:, p));
end
% Reshape back to a column vector
nprime = reshape(nprime, [], 1);

% Normalize
nprime = reshape2colvector(nprime);
nprime = reshape(bsxfun(@rdivide, nprime, colnorm(nprime)), [], 1);

% Satisfy the hard irradiance constraint
npp = OnConeRotation(theta, nprime, s);

end

As with the AEP reconstruction we apply this for a fixed number of it-
erations. The output is a set of normals that respect the hard irradiance
constraint.
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3.2 Novel Reconstruction Method

For our reconstruction method we borrow from ideas used in morphable
model reconstructions. Given a texture and shape model of faces, we can
generate a reconstruction of a given input image by finding the best-fitting
coe�cients. We do this by first noting that the intensity of any given pixel,
I(x) can be represented as given in Equation 2.5. We can, therefore, look
to reconstruct a face by minimizing the equation

X

x

kI(x)� ⇢
x

n
x

· sk2

where x represents every pixel in the image and s represents the light vector.
In terms of the statistical model we find two sets of coe�cients, a and c,
that minimize the equation
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a
i

bx
i

+ µx

t
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!
k2 (3.4)

where bx
i

are the principal components of the texture, ñ the principal com-
ponents of the shape, µx

t

is the average texture vector, µx

n

is the average
normal vector, a the texture coe�cients and c the shape coe�cients.

In order to solve for the texture coe�cients, a, we can rearrange the
above equation as follows
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We can then re-arrange the above result in to the matrix form below
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In order to minimize this formulation we can take the zero-crossing of the
derivative. Therefore we calculate the gradient with respect to a
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which we can solve in order to give a set of best-fit texture coe�cients. It
thus follows that we can provide a similar rearrangement to calculate the
shape coe�cients c. We begin by redefining Equation 3.4 as
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= ñ · s, q̃
x

= µx

n

· s and ⇢
x

=
P

P

i=1

a
i

bx
i

.
Similarly to before we can produce a rearrangment as follows
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We can then solve the derivative of the above rearrangment to yield an
equation for c
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(3.6)

Iterating the solutions of both Equation 3.6 and Equation 3.5 will yield a
set of best-fit coe�cients to reconstruct a given image. We can initialize a
and c to any random values and then terminate the algorithm when the cost
metric from Equation 3.4 converges. This algorithm is a reasonably intuitive
reconstruction of the parameters given a statistical model. It is important
to note that at every iteration the normals must be normalized in order to
yield an accurate result. This is achieved rearranging w

x

above to
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Chapter 4

Experiments and Results

In this chapter we describe the experimental process used in order to evaluate
the performance of the statistical shape-from-shading techniques and present
our results.

4.1 Experimental Process

To generate the results presented in Sections 4.3 and 4.4 the following pro-
cedure was followed:

1. Generate a training set as described in Section 4.2. This set of
images was used as the basis of the statistical model.

2. Align the training set. This was to ensure correspondance across
the faces. Without correspondance, the principal components calcu-
lated will not describe the facial features that carry the most informa-
tion. A simple a�ne transformation was perfomed in order to achieve
alignment.

3. Perform statistical analysis on the training set to build a model.
PCA was performed on three di↵erent data sets: the unprojected nor-
mals, the AEP projected normals and the PGA projected normals.

4. Align the testing dataset. Two seperate sample datasets were
created; from a database of photometric stereo images and from the
morphable model itself. The morphable model sample involved gener-
ating a random set of coe�cients in order to create a new texture and
shape. This texture and shape were then rendered using four novel
lighting conditions, including shadowing.

5. Perform the reconstructions. Four reconstructions were performed
from an input image. In order to measure the accuracy of the recon-
struction a ground truth set of normals were produced. For the mor-
phable model this was calculated by computing the normals from the
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shape vector. A surface was produced from the photometric stereo
database by performing photometric stereo as described by Barksy
and Petrou[2].

6. Compare the reconstructions by computing the angular error and
the height di↵erences between the surfaces formed through integration
of the normals.

4.2 Generating A Statistical Model

In order to build the statistical model we used the 3D morphable model
data set provided by the University of Basel[20]. 199 faces were randomly
generated from the data set using the linear reconstruction provided by
the morphable model. These faces were restricted to be within a single
standard deviation from the mean in order to ensure that true faces and
not caricatures were generated. The morphable model provides shape and
texture vectors but not any renderings. Therefore, using a simple perspective
projection and a single directed light, texture renderings were produced for
each face. The underlying shape model provided by the morphable model
was also triangulated to provide a normal per vertex. The normal was
calculated by taking the average normal of each triangle in which the vertex
participated.

Once the faces were generated they were aligned to a template face in
order to give correspondance between the points. The morphable model
provides landmarks on the face, which were aligned to a pre-calculated facial
template using a simple a�ne transformation. The four landmarks chosen
were the corner of each of the eyes, the tip of the nose and the bottom of the
chin. The texture and normals were both aligned so that a statistical model
could be generated from them. Figure 4.1 shows a representation of what
the underlying template face looks like. The red box gives the area that
each face was restricted to. Figure 4.2a and Figure 4.2b show an example
of a manually aligned texture and an aligned training set texture.
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Figure 4.1: The template face used to align the training set with

(a) Manually aligned face (b) Aligned training image

Figure 4.2: Aligned Images

Once aligned the images were concatenated row-wise, in to a single col-
umn vector, so that Principal Component Analysis could be performed. A
matrix was then created such that each column represents a single image
in the training set. The average column vector was calculated and then
subtracted from each individual column in order to yield the mean-centered
dataset. Three seperate statistical models were then produced. One model
consisted of the principal components of the unprojected surface normals.
Whilst performing PCA on directional data should not yield an accurate
model, it was interesting to see the results produced. The other two mod-
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els consisted of; PCA being performed on the data as transformed by the
Azimuthal Equidistant Projection and the third after performing Principal
Geodesic Analysis.

4.3 Photometric Stereo Database Images

An existing set of photometric stereo images was used to provide a ground
truth model. We used the photometric stereo algorithm presented by Barsky
and Petrou [2] in order to reconstruct a set of normals. We consider the nor-
mals computed by photometric stereo as ground truth due to their accuracy.
The accuracy of the normals provided by photometric stereo is described in
Section 2.3.

Seven people from the set were chosen and used as examples below. Each
of the four images of each person was aligned as described above and pho-
tometric stereo was performed. Then, one of the images was chosen and
each of the Shape-from-shading techniques described in Section 4.2 were
performed on it. We have arranged the data below such that each subsec-
tion represents the images generated for each of the seven people chosen.
Within each subsection, we present a few di↵erent rendered views, includ-
ing a color coded image of the generated normals. This image gives a good
indication as to how well the underlying set of reconstructed normals fits
the texture provided. We also include an image that represents the angular
error between the reconstruction and the ground truth. The angular error
was calculated using the equation

|arctan k~g ⇥ ~ek
~g · ~e |

where ~g is the ground truth normal and ~e is the estimated normal. This is
performed for every pixel. The brighter the pixel produced, the larger the
error and thus the further the estimate has deviated from the ground truth.
Therefore, a perfect match would produce a black image.

Each of the images used for reconstruction is provided in Figure 4.3
below. Below each image is a coded name for the subject. For the following
subsections there will be 5 images per row. The first image in every row
is the ground truth. The other images, from left to right are: the novel
reconstruction, Smith’s reconstruction directly on the normals, the AEP
reconstruction and the PGA reconstruction.
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(a) Bej (b) Bln (c) Fav (d) Mut

(e) Pet (f) Rob (g) Srb

Figure 4.3: Aligned color images from the photometric stereo set

4.3.1 Subject 1 - Bej

In this section we present the reconstruction of the person we refer to as
Bej. All the reconstructions were produced from one of the four images
provided by the photometric set. The sample image is given in Figure 4.3a.
Bej represents a particularly di�cult reconstruction as she is wearing a head
scarf which causes a white frame around her face.
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Ground Novel Unprojected AEP PGA

Figure 4.4: The reconstructions of subject bej. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.2 Subject 2 - Bln

In this section we present the reconstruction of the person we refer to as Bln.
All the reconstructions were produced from one of the four images provided
by the photometric set. The sample image is given in Figure 4.3b.
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Ground Novel Unprojected AEP PGA

Figure 4.5: The reconstructions of subject bln. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.3 Subject 3 - Fav

In this section we present the reconstruction of the the person we refer to
as Fav. All the reconstructions were produced from one of the four images
provided by the photometric set. The sample image is given in Figure 4.3c.
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Ground Novel Unprojected AEP PGA

Figure 4.6: The reconstructions of subject fav. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.4 Subject 4 - Mut

In this section we present the reconstruction of the person we refer to as
Mut. All the reconstructions were produced from one of the four images
provided by the photometric set. The sample image is given in Figure 4.3d.
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Ground Novel Unprojected AEP PGA

Figure 4.7: The reconstructions of subject mut. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.5 Subject 5 - Pet

In this section we present the reconstruction of the person we refer to as Pet.
All the reconstructions were produced from one of the four images provided
by the photometric set. The sample image is given in Figure 4.3e.
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Ground Novel Unprojected AEP PGA

Figure 4.8: The reconstructions of subject pet. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.6 Subject 6 - Rob

In this section we present the reconstruction of the person we refer to as
Rob. All the reconstructions were produced from one of the four images
provided by the photometric set. The sample image is given in Figure 4.3f.
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Ground Novel Unprojected AEP PGA

Figure 4.9: The reconstructions of subject rob. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.3.7 Subject 7 - Srb

In this section we present the reconstruction of the person we refer to as Srb.
All the reconstructions were produced from one of the four images provided
by the photometric set. The sample image is given in Figure 4.3g.

40



Ground Novel Unprojected AEP PGA

Figure 4.10: The reconstructions of subject srb. The first row is the normal
map. The second row is a profile rendering. The third row is a side view.
The fourth row is a rendering from below the chin. The final row is the
angular error between the reconstruction and the ground truth.

4.4 Illuminated Morphable Model Images

In order to test the ability of the models to reconstruct images that are lit in
challenging ways, we generated some images from the morphable model. Al-
though these images are technically in the training set, as they are generated
using the same set of eigenvectors as the constructed model, the lighting con-
ditions still provide a challenge. The original training set was ambiently lit
and so these generated faces provide a challenge due to specular highlights
and self shadowing. Di�cult light directions are demonstrated, including
from below the chin and above the forehead. These are particularly chal-
lenging, as much of the face is in shadow. Due to the global nature of the
reconstructions a lot of this error is propagated across the recovered shape.
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In the sections below, we present the face under four di↵erent lighting con-
ditions. We give the di↵erent lighting conditions in terms of their spherical
coordinates, ✓ and �, where ✓ is the horizontal rotation and � is the vertical
rotation. As in Section 4.3, we present the results, from left to right: ground
truth, novel reconstruction, Smith’s reconstruction directly on the normals,
the AEP reconstruction and the PGA reconstruction. The four images used
for reconstruction are given in Figure 4.11 below.

(a) ✓ = 0,� = 0 (b) ✓ = 45,� = 0 (c) ✓ = 0,� = 45 (d) ✓ = 0,� = �45

Figure 4.11: Aligned images generated from the morphable model

4.4.1 Lit morphable model - Front

Here we present the morphable model lit from ✓ = 0, � = 0. This should be
a simple reconstruction as it is simply reconstructing a texture from within
the eigenspace.
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Ground Novel Unprojected AEP PGA

Figure 4.12: The first row is the normal map. The second row is a profile
rendering. The third row is a rendering from below the chin. The final row
is the angular error between the reconstruction and the ground truth.

4.4.2 Lit morphable model - Left

Here we present the morphable model lit from ✓ = 45, � = 0. This causes
shadows to be cast by the nose and thus should a↵ect negatively a↵ect the
reconstruction. However, due to the global nature of the reconstructions
they should still yield reasonable results.
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Ground Novel Unprojected AEP PGA

Figure 4.13: The first row is the normal map. The second row is a profile
rendering. The third row is a rendering from below the chin. The final row
is the angular error between the reconstruction and the ground truth.

4.4.3 Lit morphable model - Above

Here we present the morphable model lit from ✓ = 0, � = 45. This puts
a signifcant portion of the face in shadow and is a very di�cult angle to
reconstruct from. It will negatively a↵ect the reconstruction below the nose,
particularly the mouth and chin.
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Ground Novel Unprojected AEP PGA

Figure 4.14: The first row is the normal map. The second row is a profile
rendering. The third row is a rendering from below the chin. The final row
is the angular error between the reconstruction and the ground truth.

4.4.4 Lit morphable model - Below

Here we present the morphable model lit from ✓ = 0, � = �45. This is
arguably the hardest angle to reconstruct from as the chin causes a large
area of occlusion. For this reason a lot of the face is cast in shadow and
areas such as the eyes become very innacurate. It also a↵ected by the large
shadow that the nose casts across the area of the face beneath the eyes.
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Ground Novel Unprojected AEP PGA

Figure 4.15: The first row is the normal map. The second row is a profile
rendering. The third row is a rendering from below the chin. The final row
is the angular error between the reconstruction and the ground truth.
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Chapter 5

Evaluation

In this Chapter we evaluate the results provided in Chapter 4. We begin by
presenting the textures reconstructed from each of the subjects considered.
The novel reconstruction presented in Chapter 3 gives coe�cients for recon-
structing the texture as well as the shape. We therefore show the textures
from which the normals were generated. We go on to present some analysis
on the angular error calculated between the reconstructions and the ground
truths. Finally, we compare and contrast the techniques performed by pick-
ing out specific reconstructions and evaluating them. The majority of the
analysis presented below is qualitative and involves comparing the shapes
of facial features, such as the mouth and nose.

5.1 Reconstructed Textures

In this Section we present the reconstructed textures from our novel tech-
nique. The overall results in terms of the texture match were acceptable. It
should be noted, however, that the texture reconstructions were particularly
poor when attempting to reconstruct from images that were in the training
set. In this case the technique should produce an exact match, but it does
not.

5.1.1 Photometric Stereo Database Reconstructed Textures

In Figure 5.1 we present the reconstructed textures for each of the photo-
metric stereo images used in Section 4.3.
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(a) bej (b) bln

(c) fav (d) mut

(e) pet (f) rob

(g) srb

Figure 5.1: The reconstructed textures for each of the faces presented in
Section 4.3. The right hand image in each pair is the original texture.

Figure 5.1 clearly shows that the texture recovered has a resemblance to
the original texture. Figure 5.1b is a particularly accurate reconstruction as
we even have some shading on the top lip that is from the moustache. The
images do not exactly match the textures, however, due to their reliance
on reconstructing the normals. Since the reconstruction of the texture co-
e�cients is reliant on the accuracy of the normals we are restricted as to
how accurate the texture reconstruction will ever be. However, due to the
fact that we are concentrating on recovering the surface shape and not the
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texture, we can simply use the original texture with our recovered shape.
For textures such as Figure 5.1a our reconstruction is actually poor. We
haven’t managed to capture the headscarf at all and thus, the texture quite
stongly resembles the mean texture.

5.1.2 Morphable Model Reconstructed Textures

In Figure 5.2 we present the textures reconstructed from the morphable
model under unique lighting conditions.

(a) (0,0) Novel (b) (0,0) Original (c) (45,0) Novel (d) (45,0) Original

(e) (0,45) Novel (f) (0,45) Original (g) (0,-45) Novel (h) (0,-45) Original

Figure 5.2: The reconstructed textures for each of the faces presented in
Section 4.4. (0,0) indicates spherical coordinates ✓ = 0, � = 0

In the case of Figure 5.2a above we have an extremely poor reconstruc-
tion. Given that this face was constructed using the morphable model we
should be able to reproduce this texture exactly. This sample face is in
the eigenspace of the original training set and thus, the textures should be
identical. However, the normals are not constructed as accurately as would
be expected and so, the texture is never truly accurate either.

The varied lighting conditions do not seem to have had a particularly
large impact on the reconstructive power of the model. Whilst Figure 5.2c
does lack the proper shading, the overall structure of the face still appears
to be accurate.
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5.2 Shape Reconstruction

In this Section we present the reconstructed shapes from each of the tech-
niques performed. We also compare the total angular error and height dif-
ference between the di↵erent reconstructions.

5.2.1 Angular Error

In each of the angular error images given in Sections 4.3 and 4.4, every
pixel represents the deviation between the ground truth normals and the
reconstruction. In order to produce a quantitative measure to compare how
accurate the techniques were in comparison to one another, we summed
every pixel. Whilst some areas, shown as white in the images, show large
deviations in the normals, the sum of the normals gives a better overall
indication as to the accuracy of the reconstruction.

Figure 5.3: Each image in the photometric dataset is analysed. There are
four series that represent each of the reconstruction techniques respectively.
The series labelled normals represents Smith’s reconstruction without a pro-
jection applied to the normals.

Figure 5.3 shows the total error for each of the seven images recon-
structed in Section 4.3. It clearly shows that the azimuthal equidistant
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projection yields the most accurate reconstructions. It provided the least
total error across all seven of the images tested. Principal geodesic analy-
sis was very consistent across all the images tested and was more accurate
than the unprojected normals in the majority of the reconstructions. Unsur-
prisingly, our novel reconstruction and Smith’s unprojected reconstruction
were consistently worse than the projected techniques. This supports the
evidence that performing PCA on directed data yields inaccurate principal
components.

The data above is misleading, however, as from visual inspection we
can see that the recovered height maps often have large artifacts in the
AEP reconstruction. This is particularly noticeable in the reconstruction of
Fav in Figure 4.3c. Here we can clearly see that the AEP reconstruction
has produced large artifacts due to the fact that the normals recovered are
poor. In Figure 5.4, we can see the reason for the poor reconstruction. The
area highlighted by the red rectangle shows the misaligned normals. It also
clearly demonstrates that some of the normals are pointing in the incorrect
direction, which will cause artefacts after integration.

Figure 5.4: Demonstrates the incorrect normals that cause the artefacts seen
in the AEP reconstruction for Fav.

In fact, given another of the Fav images, we can see that Smith’s method
of rotating back on to the reflectance cone yields very poor results. This is
largely to do with the two black patches at the bottom corners of the image,
which are in shadow. Smith’s rotation method causes a global error that
propagates and causes a very poor reconstruction. The dark patches are
shown in Figure 5.5.
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Figure 5.5: The black patches at the corner of this figure causes global errors
in Smith’s reconstructions.

Ground Novel Unprojected AEP PGA

Figure 5.6: The first row is the normal map. The second row is a profile
rendering. The third row is a rendering from below the chin. The final row
is the angular error between the reconstruction and the ground truth.

5.2.2 Height Di↵erence

A more accurate measure of the quality of the reconstruction may be the
di↵erence between the ground truth and reconstruction height maps. In Fig-
ure 5.7, we can clearly see that the AEP reconstruction deviates a lot more
than suggested by Figure 5.3. However, despite the AEP reconstruction
su↵ering from the impact of a few particularly bad normals, it does min-
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imise the angular error. The reason for the AEP reconstruction causing such
poor normals is likely due to the structure of the projection. The azimuthal
equidistant projection relies on calculating both ✓ and � using trigonometric
techniques. These techniques can propagate error due to floating point errors
and because of the periodic nature of both the sine and cosine functions.
In order to correctly calculate the projection it was necessary to restrict the
range of ✓ between [�⇡/2,⇡/2].

Figure 5.7: The absolute di↵erence between each reconstruction technique
and the ground truth. There are four series that represent each of the re-
construction techniques respectively. The series labelled normals represents
Smith’s reconstruction without a projection applied to the normals.

We also provide the angular error and height di↵erence metrics for the
morphable model reconstructions given in Section 4.4. Figure 5.8 gives the
height di↵erence and Figure 5.9 gives the angular error. In this case the
height di↵erence was fairly even across all the reconstruction techniques,
except for PGA. PGA seems particurly poor at reconstructing the images
lit from above and below. Smith does mention that the global nature of his
reconstruction technique can cause issues under poor lighting conditions.
In fact in [23] he suggests using a robust statistic in order to minimize the
a↵ect of shadows and low albedo regions.
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Figure 5.8: The absolute di↵erence between each reconstruction technique
and the ground truth. There are four series that represent each of the re-
construction techniques respectively. The series labelled normals represents
Smith’s reconstruction without a projection applied to the normals.
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Figure 5.9: Each image in the morphable model reconstruction is analysed.
There are four series that represent each of the reconstruction techniques
respectively. The series labelled normals represents Smith’s reconstruction
without a projection applied to the normals.

The novel reconstruction does reasonably well under these conditions,
likely due to the fact that it is reconstrucing from it’s own texture and not
the original texture. Therefore, these areas of self shadow do not appear
on the reconstructed texture and so, do not a↵ect the reconstruction of the
normals.

5.3 A Visual Comparison

One of the major di↵erences between the novel reconstruction method and
Smith’s reconstruction method is the shape of the normal map. The first
row in each of the sets of images provided in Sections 4.3 and 4.4 shows
this di↵erence. The colour scheme is created by mapping each component
of a normal (x, y, z) to a colour in RGB space, (r, g, b). Therefore, accurate
reconstructions should have similarly coloured regions, as this would suggest
that the normals are pointing in a similar direction. Figure 5.10 clearly
shows that Smith’s normal maps look more like the reference face than
that of the novel reconstruction. This has to do with the on cone rotation
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performed in Smith’s reconstruction. Since Smith looks to make his normals
closely match the orientation of the reflectivity cone, he achieves a normal
map that more accurately mimics the face. However, in areas with specular
highlights or low albedo, the reflectivity cone calculated will be inaccurate.
This will cause the on cone rotation to produce poor normals that cause
issues during surface reconstruction.

When two normals in close proximity do not agree on the surface direc-
tion, integrating them does not yield a smooth surface. This is most notable
in Smith’s reconstructions of Pet, shown in Figure 4.8, and Srb, shown in
Figure 4.10. The novel reconstruction is less constrained and is more likely
to generate a face like surface. Unfortunately, this means that the novel
implementation often generates faces that don’t appear to deviate from the
mean by very much. This is due to the fact that if the texture it reconstructs
is not accurate, then the normals won’t be either. This is particularly ap-
parent in Subsection 4.4.4 where the morphable model is lit from below.
Here the novel reconstruction doesn’t appear to have matched the sample
at all. The nose and the mouth do not match the shape of the ground truth
and the nose in particular looks to be very poor. In comparison to Smith’s
reconstructions, however, it could be argued that our novel implementation
is more face like.

Sample Novel Smith

Figure 5.10: The novel reconstruction compared against Smith’s reconstruc-
tion. Smith’s reconstruction more accurately matches the original texture.

The novel reconstruction of Bej shows that it does not always reproduce
the mean face. The chin from the ground truth of Bej is very flat, much
flatter than the mean shape of the training set. In Figure 5.11 we show
this di↵erence between the ground truth, the mean shape and the novel
reconstruction. We can clearly see that the novel method has attempted to
reconstruct the chin of Bej, despite it deviating highly from the training set.
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Bej Mean Novel

Figure 5.11: Illustrating the attempt of the novel technique to reconstruct
subject Bej’s chin. From left to right we have the ground truth of Bej’s chin,
the mean chin of the training set and the novel reconstruction of Bej’s chin.

5.3.1 A Comparison of Projected and Unprojected Normals

Here we visually compare the results gained from performing the azimuthal
equidistant projection and principal geodesic analysis against Smith’s tech-
nique on the unprojected normals. Unfortunately, we are unable to compare
against the novel technique as the novel technique was only performed di-
rectly upon the normals. Despite the fact that the angular error appears to
be minimized by using the projections, the reconstructions don’t appear to
agree. Visually, they are very similar when comparing between AEP, PGA
and the unprojected data. This is likely due to the fact that they are all con-
strained by the hard irradiance constraint. The similarity between the three
techniques is easily demonstrated by a side-by-side comparison of Fav’s re-
construction. In Figure 5.12 we can see that all three of the reconstructions
are very similar.

Unprojected AEP PGA

Figure 5.12: All three reconstructions are visually very similar, despite the
angular error being minimized in the AEP reconstruction.
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The similarity evident in Figure 5.12 suggests that the projections may
be unnecessary. The quality of the unprojected reconstruction is quite sur-
prising when compared to the projected results. If the visual quality of the
result is more important than the surface accuracy, the unprojected recon-
struction may be su�cient.
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Chapter 6

Conclusion

We have presented a novel implementation of shape from shading that bor-
rows from the morphable model construction. We have shown that it is ca-
pable of reconstructing a variety of faces, including under challenging light-
ing conditions. We have also demonstrated the expressive power of the our
training set and its ability to recover both shape and texture coe�cients that
form a reasonable appoximation of the input image. We also demonstrated
the stability of our algorithm in comparison to William Smith’s algorithm,
particularly under di�cult lighting conditions. Accuracy of the algorithm
could likely be improved by performing an optical flow algorithm as de-
scribed in Blanz and Vetter’s work[4]. The low number of feature points
chosen for image alignment, coupled with the simple a�ne transformation
performed, meant that unique face shapes did not match the training set
particularly well.

We also presented a set of Matlab functions that enable both azimuthal
equidistant projection and principal geodesic analysis to be performed. These
functions are useful in any domain that wishes to build a statistical model on
directed data. We also present Matlab code to perform William Smith’s re-
construction as described in his papers [22, 23]. In providing an implementa-
tion of Smith’s work we also made a comparison between the reconstructive
power of projected versus unprojected normals. We found that projected
normals outperform unprojected normals in minimizing the angular error
but tended to be less stable. This is likely due to compounding of errors in
taking sine and cosine of floating point numbers. Visually, however, the pro-
jected and unprojected reconstructions are di�cult to tell apart. It could,
therefore, be argued that performing the projection is unnecessary, if the
visual quality of the shape is all that mattered. Upon reflection, comparison
between the reconstructions would have been enhanced by the addition of a
projection operator to the novel technique. Without this second method to
compare against, it is di�cult to judge the reconstructive power of projected
normals against unprojected normals.
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The project has been largely successful in that two reconstruction meth-
ods were produced and it was possible to compare the di↵erent projection
methods. In terms of reconstructive power, Smith’s method still appears to
be superior to the novel method. However, the novel method does recon-
struct visually pleasing faces from input images. It is also reasonably simi-
lar to Smith’s method in terms of overall error, particuarly the di↵erence in
height maps. This is largely due to the stability of the novel implementation
in comparison to Smith’s reconstruction.

6.1 Future Work

There are a number of extensions that could potentially improve the re-
sults that were generated in this investigation. However, the underlying
framework provided would give a solid base upon which to implement the
improvements.

• In order to give a more thorough comparison of projected normals
against unprojected normals, it would be interesting to add a projec-
tion function to the novel reconstruction. This would require reformu-
lating the update loop to take into account some projection function
when reconstructing the normals. The texture coe�cient would re-
main unchanged. This comparison would help confirm the validity of
projecting the directed data before performing PCA.

• The novel reconstruction algorithm presented relies on a least squares
distance to calculate the error. This form of cost function is not robust
and better results would be provided if it was replaced with a robust
cost function. A robust function is stable in the presence of outliers.
This is particularly applicable to the domain of facial reconstruction as
faces are prone to areas of poor lighting or self-cast shadows. In these
areas the normals produced will be noisy and distort the shape of the
reconstructed face. If we replaced the least squares distance with an
M-estimator (Maximum likelihood estimator) we would achieve better
results in these poorly lit regions. An M-estimator replaces the squared
residuals by a kernel function that limits the e↵ects of large residuals
on the result.

• The current techniques investigated, as well as the novel reconstruc-
tion, only work on front-facing images. It would be a useful extension
of this work to attempt to add a model of motion to the reconstruc-
tion. This would allow pose invariant reconstructions and is particu-
larly useful in the area of unconstrained image reconstructions. Given
the large number of unconstrained photosets that exist, this could be
very useful in areas such as face recognition.
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• Lambertian reflectance is asssumed by the techniques investigated in
this project. Lambertian reflectance, however, is not a particularly
accurate lighting model for faces. Areas of low-albedo around the eyes
and mouth, facial hair for example, do not exhibit Lambertian re-
flectance. It would be a worthy extension of our model to investigate
the feasability of using spherical harmonics in order to model the light-
ing conditions. Previous work by Ahmed and Farag[1] have investi-
gated using statistical models involving spherical harmonics. However,
they investigate the use of height maps and not the surface normals
themselves. It would, therefore, be novel work to investigate the use
of spherical harmonics with surface normals.
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